TECHNOLOGICAL CHARACTERISTICS OF BREADFRUIT FLOUR (Artocarpus altilis L.) IN THE QUALITY OF GLUTEN-FREE BREAD
DOI:
https://doi.org/10.25110/arqsaude.v29i2.2025-11468Palavras-chave:
Gluten-free breads, Breadfruit flour, Technological characteristicsResumo
This study aimed to characterize the physicochemical properties and develop gluten-free breads using breadfruit flour (BFF). Three bread formulations were developed: a control bread (CB) with base flour (BF - composed of rice flour, corn starch, and cassava starch), and two variations with partial replacement of BF by 15% and 25% of BFF designated respectively as BFFB15 and BFFB25. For BFF, particle size, water solubility index (WSI) and water absorption index (WAI) were determined. The proximate composition was determined in the BFF and in the breads, as well as the sensory analysis of the breads. BFF showed that 85.10% of its particles were smaller than 250μm. The WAI (g/g) increased from 1.27 to 4.76, while the WSI (%) decreased from 16.10 to 8.80 as the temperature rose from 30 to 95°C. The contents (g/100g) of the BFF proximate composition were: moisture (3.97±0.20); proteins (2.89±0.08); lipids (0.81±0.10); ash (1.15±0.12); carbohydrates (91.33±0.25), while for CB, BFFB15 and BFFB25 there was a variation in moisture from 47.24±0.21 to 51.88±0.21; proteins (5.29± 0.10 to 5.39±0.11); lipids (4.97±0.07 to 5.40±0.47); ash (0.87±0.06 to 1.29±0.06) and carbohydrates (35.91±0.10 to 42.21±0.07). The data suggest that the breads produced have low lipid content and high mineral content. The weight loss of the breads post-cooking was 6.44 and 6.03%, for BFFB15 and BPFFB25, respectively. Sensory analysis showed that both breads presented good acceptance, with BFFB15 having the highest scores. The BFF proved to be nutritionally viable, and with good acceptability in the products evaluated. It also proved to have important technological characteristics for application in gluten-free bakery products, to promote volume and increase the yield of post-baking doughs.
Downloads
Referências
ABEBE, W.; COLLAR, C.; RONDA, F. Impact of variety type and particle size distribution on starch enzymatic hydrolysis and functional properties of tef flours. Carbohydr. Polym., [S. l.], v. 115, p. 260-268, 2015.
ADEPEJU, A. B.; GBADAMOSI, S. O.; ADENIRAN, A. H.; OMOBUWAJO, T. O. Functional and pasting characteristics of breadfruit (Artocarpus altilis) flours. Afr. J. Food Sci., [S. l.], v. 5, n. 9, p. 529-535, 2011.
AHMED, J. et al. Effect of sieve particle size on functional, thermal, rheological and pasting properties of Indian and Turkish lentil flour. J. Food. Eng., [S. l.], v. 186, p. 34-41, 2016.
AJAY, S.; PRADYUMAN K. Optimization of gluten free biscuit from foxtail, copra meal and amaranth. Food Science and Technology, [S. l.], v. 39, n. 1, p. 43-49, 2018.
AKUBOR, P. I.; FAYASHE, T. O. Chemical composition, Functional properties and performance of soybean and wheat flour blends in instant fried noodles. South Asian J. Food Technol. Environ., [S. l.], v. 4, n. 2, p. 690-699, 2018.
ANYASI, T. A.; JIDEANI, A. I. O. Properties and Processing Process of Flour Products. Processes, [S. l.], v. 10, n. 11, p. 2450, 2022.
AOAC. Official Methods of Analysis of the Association of Official Analytical Chemists: Official Methods of Analysis of AOAC International. 21. ed. Washington: AOAC, 2019.
APPIAH, F.; ODURO, I.; ELLIS, W. O. Nutritional composition of breadfruits (Artocarpus spp. and Treculia africana) in Ghana. Acta Hortic., [S. l.], v. 1128, p. 15-20, 2016.
ARAÚJO, M. O. D.; GUERRA, I. M. M. Alimentos per capita. Natal: Universitária, 1992.
ARINOLA, S. O.; AKINGBALA, J. O. Effects of soy flour on the quality attributes of gluten free bread produced from breadfruit flour. Croat. J. Food Sci. Technol., [S. l.], v. 14, n. 1, p. 116-123, 2022.
AZEVEDO-MELEIRO, C. H.; RODRIGUEZ-AMAYA, D. B. Confirmation of the identity of the carotenoids of tropical fruits by HPLC-DAD and HPLC-MS. J. Food Compos. Anal., [S. l.], v. 17, n. 3-4, p. 385-396, 2004.
AYODELE, I. F.; ALADESANMI, O. A. The Proximate Composition and Sensory Evaluation of the Flours of Breadfruit. Chemistry and Materials Research, [S. l.], v. 3, n. 9, p. 79-83, 2013.
BAKARE, A. H. et al. Rheological, baking, and sensory properties of composite bread dough with breadfruit (Artocarpus communis Forst) and wheat flours. Food Science & Nutrition, [S. l.], v. 4, n. 4, p. 573-587, 2016.
BRASIL. Ministério da Saúde. Agência Nacional de Vigilância Sanitária. Resolução RDC nº 263, de 22 de setembro de 2005. Diário Oficial da União: seção 1, Brasília, DF, p. 368, 23 set. 2005.
BRASIL. Ministério da Agricultura, Pecuária e Abastecimento (MAPA). Portaria MAPA nº 469, de 8 de agosto de 2022. Regulamento Técnico de Identidade e Qualidade da Farinha de Trigo. Diário Oficial da União: seção 1, Brasília, DF, 23 set. 2005.
CLARK, E. A.; ARAMOUNI, F. M. Evaluation of Quality Parameters in Gluten-Free Bread Formulated with Breadfruit (Artocarpus altilis) Flour. Journal of Food Quality, [S. l.], v. 2018, ID 1063502, 2018.
CLERICI, M. T. P. S.; CARVALHO-SILVA, L. Nutritional bioactive compounds and technological aspects of minor fruits grown in Brazil. Food Res. Int., [S. l.], v. 44, n. 7, p. 1658-1670, 2011.
CZAJA-BULSA, G. Non coeliac gluten sensitivity - A new disease with gluten intolerance. Clinical Nutrition, [S. l.], v. 34, n. 2, p. 189-194, 2015.
DALEY O.; ROBERTS-NKRUMAH, L.; ALLEYNE A. Morphological diversity of breadfruit Artocarpus altilis (Parkinson) Fosberg in the Caribbean. Sci Hortic., [S. l.], v. 266, p. 109278, 2020.
DUTCOSKY, S. D. Análise sensorial de alimentos. Curitiba: Ed. DA Champagnat, 1996.
GAO, Y. et al. Gluten-free bakery and pasta products: prevalence and quality improvement. International Journal of Food Science and Technology, [S. l.], v. 53, n. 1, p. 19-32, 2018.
GARCIA-ARMENTA, E. et al. Analysis of the failure of cracked biscuits. Journal of Food Engineering, [S. l.], v. 196, p. 52-64, 2017.
GIMÉNEZ, M. A. et al. Rheological, functional and nutritional properties of wheat/broad bean (Vicia faba) flour blends for pasta formulation. Food Chemistry, [S. l.], v. 134, n. 1, p. 200-206, 2012.
HUANG, S.; MARTINEZ, M. M.; BOHRER, B. M. The Compositional and Functional Attributes of Commercial Flours from Tropical Fruits (Breadfruit and Banana). Foods, [S. l.], v. 8, n. 11, p. 586, 2019.
JONES, A. M. P. et al. “Breadfruit: an old crop with a new future,” In: MOO-YOUNG, M. (ed.). Comprehensive Biotechnology. 2. ed. Amsterdam: Elsevier, 2011. p. 235-239.
JONES, A. et al. Beyond the bounty: breadfruit (Artocarpus altilis) for food security and novel foods in the 21st century. Ethnobot Res Appl., [S. l.], v. 9, p. 129-149, 2011.
KEHINDE, A. et al. South Pacific cultivars of breadfruit (Artocarpus altilis (Parkinson) Fosberg and A. mariannensis Trécul) and their hybrids (A. altilis X A. mariannensis) have unique dietary starch, protein and fiber. J Food Compost Anal., [S. l.], v. 105, p. 104228, 2022.
KELTE-FILHO, I. et al. Fast method to determine the elements in maize flour: reduction in preparation time and reagent consumption. Brazilian Journal of Food Technology, [S. l.], v. 21, p. e2017091, 2017.
KULUSHTAYEVA, B. et al. Composite flour production and assessment of the safety quality of gluten-free bread. Food Sci. Technol., [S. l.], v. 43, p. e56522, 2023.
LIU, Y. et al. Breadfruit flour is a healthy option for modern foods and food security. PLoS One, [S. l.], v. 15, n. 7, p. e0236300, 2020.
LIU, Y.; RAGONE, D.; MURCH, S. Breadfruit (Artocarpus altilis): a source of high-quality protein for food security and novel food products. Amino Acids, [S. l.], v. 47, n. 4, p. 847-56, 2015.
LOPES, L. C. M. et al. Functional, biochemical and pasting properties of extruded bean (Phaseolus vulgaris) cotyledons. International Journal of Food Science & Technology, [S. l.], v. 47, n. 9, p. 1859-1865, 2012.
MAHLOKO, L. M. et al. Bioactive compounds, antioxidant activity and physical characteristics of wheat-prickly pear and banana biscuits. Heliyon, [S. l.], v. 5, n. 10, p. 02479, 2019.
MARTÍNEZ, G. B.; MOURÃO JUNIOR, M.; BRIENZA JUNIOR, S. Seleção de ideótipos de espécies florestais de múltiplo uso em planícies fluviais do Baixo Amazonas, Pará. Acta Amazônica, [S. l.], v. 40, n. 1, p. 65-74, 2010.
MARTÍNEZ, E. et al. Elaboration of Gluten-Free Cookies with Defatted Seed Flours: Effects on Technological, Nutritional, and Consumer Aspects. Foods, [S. l.], v. 10, n. 6, p. 1213, 2021.
MBAH, P. E. et al. Comparative Evaluation of Nutrient Composition of Bread Fruit Flour (Artocarpus altilis). International Journal of Research Publication and Reviews, [S. l.], v. 3, n. 1, p. 812-816, 2022.
McRAE, M. P. Dietary fiber intake and type 2 diabetes mellitus: an umbrella review of meta-analyses. J Chiropr Med., [S. l.], v. 17, n. 1, p. 44-53, 2018.
MEHTA, K. A.; QUEK, Y. C. R.; HENRY, C. J. Breadfruit Processing, nutritional quality, and food applications – Review. Frontiers in Nutrition, [S. l.], v. 10, p. 1156155, 2023.
MEILGAARD, M.; CIVILLE, G. V.; CARR, B. T. Sensory Evaluation Techniques. 4. ed. Boca Raton: CRC Press, 2007.
NILAND, B.; CASH, B. D. Health Benefits and Adverse Effects of a Gluten-Free Diet in Non–Celiac Disease Patients. Gastroenterology & Hepatology, [S. l.], v. 14, n. 2, p. 82-91, 2018.
NOCHERA, C. L.; RAGONE, D. Development of a Breadfruit Flour Pasta Product. Foods, [S. l.], v. 8, n. 3, p. 110, 2019.
NWOKOCHA, L. M.; WILLIAMS, P. A. Comparative study of physicochemical properties of breadfruit (Artocarpus altilis) and white yam starches. Carbohydr. Polym., [S. l.], v. 85, n. 2, p. 294-302, 2011.
OKPALA, L. C.; OKOLI, E. C. Optimization of composite flour biscuits by mixture response surface methodology. Food Science & Technology International, [S. l.], v. 19, n. 4, p. 343-350, 2013.
OLADUNJOYE, I.; OLOGHOBO, A.; OLANIYI, C. Nutrient composition, energy value and residual antinutritional factors in diferently processed breadfruit (Artocarpus altilis) meal. Afr. J. Biotechnol., [S. l.], v. 9, n. 27, p. 4259-4263, 2010.
PARINDURI, D. H.; NURMINAH, M.; JULIANTI, E. Physicochemical and sensory characteristics of bread made from composite flour mocaf, flour and starch from orange sweet potato and breadfruit. Earth and Environmental Science, [S. l.], v. 782, p. 032078, 2021.
PIMENTA, F. S. et al. Physicochemical Characterizationand Preparation of Gluten-Free Cakes with Flour from The Pulp and Seed of Artocarpus heterophyllus. Peer Review, [S. l.], v. 5, n. 26, p. 377-392, 2023.
POSNER, E. S.; HIBBS, A. N. Wheat Flour Milling. 2. ed. Saint Paul: AACC, 2005.
RAGONE, D. Breadfruit for food and nutrition security in the 21st century. Trop Agric., [S. l.], v. 93, n. 5, p. 1-32, 2016.
RAJINI, L. I.; MAHENDRAN, T.; ROSHANA, M. R. Evaluation of storage stability of cookies made from breadfruit flour. Sri Lanka J Technol., [S. l.], v. 2, n. 2, p. 32-9, 2021.
SILVA, A. J. et al. Effect of heat treatment on nutritional value and bioactive compounds of banana heart (Musa acuminata Colla). RRJoFST, [S. l.], v. 11, n. 3, p. 15-26, 2022.
SOIFOINI, T. et al. Bioactive Compounds, Nutritional Traits, and Antioxidant Properties of Artocarpus altilis (Parkinson) Fruits: Exploiting a Potential Functional Food for Food Security on the Comoros Islands. Journal of Food Quality, [S. l.], v. 2018, ID 5697928, 2018.
STONE, H.; SIDEL, J. L. Sensory evaluation pratices. Florida: Academic Press, 1985. Capítulo 7: Affective testing, p. 227-252.
SUSMAN, I-E. et al. Formulation of Gluten-Free Cookies with Enhanced Quality and Nutritional Value. Food Science and Technology, [S. l.], v. 78, n. 1, p. 1060114, 2021.
TAN, X. et al. Effect of heat-moisture treatment on multi-scale structures and physicochemical properties of breadfruit starch. Carbohydr. Polym., [S. l.], v. 161, n. 1, p. 286-294, 2017.
TRIBESS, T. B. et al. Thermal properties and resistant starch content of green banana flour (Musa cavendishii) produced at different drying conditions. Food Science and Technology, [S. l.], v. 42, p. 1022-1025, 2009.
TUKURA, B. W.; OBLIVA, O. Proximate and Nutritional Composition of Breadfruit (Artocarpus altilis) seeds. IORS Journal of Environmental Science, Technology and Food Technology, [S. l.], v. 9, n. 3, p. 68-73, 2015.
TURI, C. et al. Breadfruit (Artocarpus altilis and hybrids): a traditional crop with the potential to prevent hunger and mitigate diabetes in Oceania. Trends Food Sci Technol., [S. l.], v. 45, n. 2, p. 264-72, 2015.
WENG, M. et al. Effects of passion fruit peel flour as a dietary fibre resource on biscuit quality. Food Sci. Technol, [S. l.], v. 41, n. 1, p. 65-73, 2021.
WIDANAGAMAGE, R.; EKANAYAKE, S; WELIHINDA, J. Carbohydrate-rich foods: glycaemic indices and the effect of constituent macronutrients. Int J Food Sci Nutr., [S. l.], v. 60, n. 4, p. 215-23, 2009.
ZAKARIA, Z. et al. Development and Physicochemical properties of Breadfruit (Artocarpus altilis) Resistant Starch Bread. J. Agrobiotech., [S. l.], v. 9, n. 1S, p. 182-193, 2018.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2025 Arquivos de Ciências da Saúde da UNIPAR

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Os Direitos Autorais para artigos publicados são de direito da revista. Em virtude da aparecerem nesta revista de acesso público, os artigos são de uso gratuito, com Creative Commons Attribution 4.0 International License.
A revista se reserva o direito de efetuar, nos originais, alterações de ordem normativa, ortográfica e gramatical, com vistas a manter o padrão culto da língua e a credibilidade do veículo. Respeitará, no entanto, o estilo de escrever dos autores.
Alterações, correções ou sugestões de ordem conceitual serão encaminhadas aos autores, quando necessário. Nesses casos, os artigos, depois de adequados, deverão ser submetidos a nova apreciação.
As opiniões emitidas pelos autores dos artigos são de sua exclusiva responsabilidade.






