EFEITO DA GERMINAÇÃO E DA DESIDRATAÇÃO NO VALOR NUTRITIVO, COMPOSTOS BIOATIVOS E ATIVIDADE ANTIOXIDANTE DE FARINHAS DE LEGUMINOSAS

Autores

  • Clícia Maria de Jesus Benevides
  • Laise Cedraz Pinto
  • Alex Sander Lopes da Silva
  • Anabela Guedes da Costa
  • Diana Andréia Tavares Pinto
  • Rita de Cássia Alves
  • Maria Beatriz Prior Pinto Oliveira

DOI:

https://doi.org/10.25110/arqsaude.v27i7.2023-010

Palavras-chave:

Germinação, Phaseolus Lunatus L., Cajanus Cajan (L. Millsp.), Farinhas

Resumo

Os objetivos deste trabalho foram avaliar o efeito da germinação no teor de macronutrientes e da desidratação em compostos bioativos, nutrientes e atividade antioxidante de farinhas das leguminosas Phaseolus lunatus L. e Cajanus cajan (L. Millsp.) germinadas. As condições de germinação foram controladas em laboratório e as amostras foram submetidas à desidratação térmica (55°C) e liofilização. Foram realizadas as análises de composição centesimal, fenólicos totais flavonoides, atividade antioxidante (DPPH, FRAP), perfil de ácidos graxos (CG-FID) e de vitâmeros de tocoferol (HPLC-DAD). A germinação das leguminosas promoveu aumento de proteínas, lipídios e carboidratos. O processamento térmico para desidratação contribuiu para perdas de proteínas, lipídios, cinzas, e maior atividade antioxidantes em ambas as espécies. O perfil de ácidos graxos e vitâmeros de tocoferol mostraram-se com variações que dependem do tipo de leguminosa e condições de processamento, podendo ser positivas ou negativas. Farinhas de leguminosas germinadas pode ser uma alternativa para a inserção na dieta ou em formulações alimentícias e as condições de processamento devem ser monitoradas com intuito de otimiza propriedades nutritivas e funcionais.

Referências

ACQUAH, C.; OHEMENG-BOAHEN, G.; POWER, K. A.; TOSH, S.M. The Effect of Processing on Bioactive Compounds and Nutritional Qualities of Pulses in Meeting the Sustainable Development Goal 2. Review. Front. Sustain. Food Syst, v.5, p. 681662, 2021. Disponível em: 10.3389/fsufs.2021.681662. Acesso em: 10 fev. 2023.

ADE-OMOWAYE, B. I. O.; TUCKER, G. A.; SMETANSKA I. Nutritional potential of nine underexploited legumes in Southwest Nigeria. Int. Food Res. J., v. 22, n. 2, p. 798-806, 2015.

ADEYEYE, E. I. Effect of cooking and roasting on the amino acid composition of raw groundnut (Arachis Hypogaea) seeds. Acta Sci Pol, Technol Aliment, v. 9, n. 2, p.201-216, 2010.

AGUILERA, I.; MARTIN-CABREJAS, M. A.; Benítez, V. et al. Changes in carbohydrate fraction during dehydration process of common legumes. J Food Compost Anal., v. 22, n. 1, 678-683, 2009.

AGUME, A. S. N.; NJINTANG, N. Y.; MBOFUNG, C. M. F. Effect of Soaking and Roasting on the Physicochemical and Pasting Properties of Soybean Flour. Foods, v. 6, n. 2, p. 12, 2017.

AKONG, G. M. A. S. M.; KHANDAKER, L.; BERTHOLD, J. et al. Anthocyanin, total polyphenols and antioxidant activity of common bean. Am. J. Food Technol., v. 6, n. 5, p. 385-394, 2011.

ALMEIDA-COSTA, G. E.; QUEIROZ-MONICI, K. S.; REIS, S. M. P. M. et al. Chemical composition, dietary fibre and resistant starch contents of raw and cooked pea, common bean, chickpea and lentil legumes. Food Chem., v. 94, n. 1, p. 327-330, 2006.

ALVES, A. U.; OLIVEIRA, A. P.; Alves, A. U. et al. Lima beans production and economic revenue as function of organic and mineral fertilization. Horticultura Brasileira, v. 26, n. 2, p. 251-254, 2008.

ALVES, R.; COSTA, A.; Jerez, M. et al. Antiradical activity, phenolics profile, and hydroxymethylfurfural in espresso coffee: Influence of technological factors. J. Agric. Food Chem., v. 58, n. 1, p. 12.221-12.229, 2010.

AMAROWICZ, R.; PEGG, R. B. Legumes as a source of natural antioxidants. Eur. J. Lipid Sci. Technol., v. 110, n. 1, 865-878, 2008.

AMAROWICZ, R.; SHAHIDI, F. Antioxidant activity of broad bean (Vicia faba) seed extract and its phenolic composition, Journal of Functional Foods, v. 38, n. 1(Part B), p. 656-662, 2017.

ANIGO, I. A.; AMEH, D. A; IBRAHIM, S. et al. (2009). Nutrient composition of commonly used complimentary foods in North Western Nigeria. Afr. J. Biotech., v. 8, n. 17, p. 4211-4216, 2009.

APAK, R.; GÜÇLÜ, K.; DEMIRATA, B. et al. Comparative evaluation of various total antioxidant capacity assays applied to phenolic compounds with the CUPRAC assay. Molecules, v. 12, n. 7, p. 1496-547, 2007.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR ISO 12.966-2:2011: Animal and vegetable fats and oils -- Gas chromatography of fatty acid methyl esters -- Part 2: Preparation of methyl esters of fatty acids. Disponível em: https://www.iso.org/standard/43172.html . Acesso em: 20 out. de 2021.

ASSOCIATION OF OFFICIAL ANALYTICAL CHEMISTS (AOAC). Official methods of analysis of AOAC International. 21. ed. Washington: AOAC, 2012. 3390 p.

BELTRAME, T. P.; RODRIGUES, E. Comparação de diferentes densidades de feijão guandu (Cajanus cajan (L.) Millsp.) na restauração florestal de uma área de reserva legal no Pontal do Paranapanema, SP. Sci For., v. 36, n. 80, p. 317-327, 2008.

BENEVIDES, C. M. J.; COSTA, A. S. G.; PINTO, D. et al. Germinação e Desidratação de Leguminosas: Efeito na Composição Nutricional, Compostos Bioativos e Atividade Antioxidante de Feijão Andu e Mangalô do Peru. Rev. Virtual de Quimica, v. 11, n. 4, p. 1249-1264, 2019.

BENZIE, I. F. F.; STRAIN, J. J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem., v. 239, n. 1, 70-76, 1996.

BERNI, P. R. A.; CANNIATTI-BRAZACA, S. G. Efeito da germinação e da sanitização sobre a composição centesimal, teor de fibras alimentares, fitato, taninos e disponibilidade de minerais em trigo. Alim. Nutr., v. 22, n. 1, p. 407-420, 2011.

BESSADA, S. M. F.; BARREIRA, J. C. M.; OLIVEIRA, M. B. P. P. Pulses and food security: dietary protein, digestibility, bioactive and functional properties. Trends Food Sci. Technol., v. 93, n. 1, 53-68, 2019.

BETANCUR-ANCONA, D.; MARTÍNEZ-ROSADO, R.; CORONA-CRUZ, A. et al. Functional properties of hydrolysates from Phaseolus lunatus seeds. Int. J. Food Sci. Technol., v. 44, n. 1, p. 128-137, 2009.

BHATTA, S.; JANEZIC, T.S.; RATTI, C. Freeze-Drying of Plant-Based Foods. Foods, v. 9, n. 1, p.87-102, 2020.

BOSCHIN, G.; ARNOLDI, A. Legumes are valuable sources of tocopherols. Food Chem., v. 127, n. 1, p. 1199-1203, 2011.

CAPRIOLI G.; GIUSTI F.; BALLINI R. et al. Lipid nutritional value of legumes: Evaluation of different extraction methods and Determination of fatty acid composition. Food Chem., v. 192, n. 1, p. 965-971, 2016.

CHAIEB, N.; GONZÁLEZ, J. L.; LÓPEZ-MESAS, M. et al. Polyphenols content and antioxidant capacity of thirteen faba bean (Vicia faba L,) genotypes cultivated in Tunisia, Food Res. Int., 44, 970–977, 2011.

CHINMA, C. E.; ABU, J. O.; ASIKWE, B. N. et al. Effect of germination on the physicochemical, nutritional, functional, thermal properties and in vitro digestibility of Bambara groundnut flours. LWT, v. 140, ID 110749, 2021. Disponível em: doi: 10.1016/j.lwt.2020.110749. Acesso em: 10 fev. 2023.

COSTA, A. S. G.; ALVES, R. C.; VINHA, A. F. et al. Optimization of antioxidants extraction from coffee silverskin, a roasting by-product, having in view a sustainable process. Ind. Crops Prod., v. 53, n.1, p. 350-357, 2014.

EL ANANY, A.M. Nutritional composition, antinutritional factors, bioactive compounds and antioxidant activity of guava seeds (Psidium Myrtaceae) as affected by roasting processes. J Food Sci Technol., v. 52, n. 4, p. 2175-2183, 2015.

FARES, C.; MENGA, V. Effects of toasting on the carbohydrate profile and antioxidant properties of chickpea (Cicer arietinum L.) flour added to durum wheat pasta. Food Chem., v. 131, n.1, p. 1140-1148, 2012.

FASOYIRO, S. B.; AKANDE, S. R.; AROWORA, K. A. et al. Physico-chemical and sensory properties of pigeon pea (Cajanus cajan) flours. Afr. J. Food Sci., v. 4, n. 3, p. 120-126, 2010.

FERNANDES, T. J. R.; ALVES, R. C.; SOUZA, T. et al. Lipid content and fatty acid profile of Senegalese sole (Solea senegalensis Kaup, 1858) juveniles as affected by feed containing different amounts of plant protein sources. Food Chem., v. 134, n. 1, p. 1337-1342, 2012.

FERREIRA, H.; VASCONCELOS, M.; GIL, A. M. et al. Benefits of pulse consumption on metabolism and health: a systematic review of randomized controlled trials. Crit. Rev. Food Sci. Nutr., v. 61, n. 1, p. 85-96, 2021.

FUJITA, K.; KAI, Y.; TAKAYANAGI, M. et al. Genotypic variability of pigeonpea in zistribution of photosynthetic carbon at low phosphorus level. Plant Sci., v. 166, n. 1, p. 641-649, 2004.

GHIASSI TARZI, B.; GHARACHORLOO, M.; BAHARINIA, M. et al. The effect of germination on phenolic content and antioxidant activity of chickpea. IJPR, v. 11, n. 4, p. 1137-1143, 2012.

GIUSTI, F.; CAPRIOLI, G.; RICCIUTELLI, M. et al. Determination of fourteen polyphenols in pulses by high performance liquid chromatography-diode array detection (HPLC-DAD) and correlation study with antioxidant activity and colour. Food Chem., v. 221, n. 1, p. 689–697, 2017.

GRANITO, M.; BRITO, Y.; TORRES, A. Chemical composition, antioxidant capacity and functionality of raw and processed (Phaseolus lunatus). J. Sci. Food Agric., v. 87, n. 15, p. 2801-2809, 2007.

HERNANDEZ-AGUIRRE, A. I.; TÉLLEZ-PÉREZ, C.; SAN MARTÍN-AZÓCAR, A. et al. Effect of instant controlled pressure-drop (DIC), cooking and germination on non-nutritional factors of common vetch (Vicia sativa spp.). Molecules, v. 25, n. 1, p. 151, 2020.

HOOVER, R.; ZHOU, Y. In vitro and in vivo hydrolysis of legume starches by α-amylase and resistant starch formation in legumes - a review. Carbohydr. Polym., v. 54, n. 1, p. 401-417, 2003.

KALOGEROPOULOS, N.; CHIOU, A.; IOANNOU, M. et al. Nutritional evaluation and bioactive microconstituents (phytosterols, tocopherols, polyphenols, triterpenic ac-ids) in cooked dry legumes usually consumed in the Mediterranean countries. Food Chem., v. 121, n. 1, p. 682-690, 2010.

KHALIL, M. I.; SALIH, M. A.; MUSTAFA, A. A. Study of fatty acid composition, physiochemical properties and thermal stability of broad beans (Vicia faba) seed oil. Agric, Biol, J, N, Am, v. 8, n. 4, p. 141-146, 2017.

KROMHOUT, D.; DE GOEDE, J. Update on cardiometabolic health effects of ω-3 fatty acids. Curr. Opin. Lipidol., v. 25, n. 1, p. 85-90, 2014.

KUTOS, T.; GOLOB, T.; KAC, M. Plestenjak, A.Dietary fibre content of dry and processed beans. Food Chem., v. 80, n.1, p. 231-235, 2003.

LIMMONGKON, A.; JANHOM, P.; AMTHONG, A. et al. Antioxidant activity, total phenolic, and resveratrol content in five cultivars of peanut sprouts. Asian Pac J Trop Biomed., v. 7, n. 4, p. 332–338, 2017.

LIU, Y.; RAGAEE, S.; MARCONE, M. F. et al. (2020). Composition of phenolic acids and antioxidant properties of selected pulses cooked with different heating conditions. Foods, v. 9, n. 1, p. 908, 2020.

MAHADEVAMMA, S.; THARANATHAN, R. N. Processing of legumes: resistant starch and dietary fiber contents. J Food Qual., v. 27, n. 4, p. 289-303, 2004.

MAHESHU, V.; PRIYADARSINI, D. T.; SASIKUMAR, J. M. Effects of processing conditions on the stability of polyphenolic contents and antioxidant capacity of Dolichos lablab L. J Food Sci Technol., v. 50, n. 4, p. 731-738, 2011.

MALEKI, S.; RAZAVI, S. H. Pulses’ germination and fermentation: two bioprocessing against hypertension by releasing ACE inhibitory peptides. Critic. Rev. Food Sci. Nutr., v. 60, n. 1, 1-18, 2020.

MARATHE, S. A.; RAJALAKSHMI, V.; JAMDAR, S. N. et al. Comparative study on antioxidant activity of different varieties of commonly consumed legumes in India. Food Chem. Toxicol., v. 49, n. 1, p. 2005-2012, 2011.

MBAH BO, EME P. E.; Eze, C. N. Nutrient potential of Almond seed (Terminalia catappa) sourced from three states of Eastern Nigeria. Afr J Agric Res., v. 8, n. 7, p. 629-633, 2013.

NJINTANG N. Y.; MBOFUNG, C. M. F.; WALDRON, K.W. In Vitro Protein Digestibility and Physicochemical Properties of Dry Red Bean (Phaseolus vulgaris) Flour: Effect of Processing and Incorporation of Soybean and Cowpea Flour. J. Agric. Food Chem., v. 49, n. 1, p. 2465-2471, 2001.

NUNES, A. M.; COSTA, A. S. G.; BESSADA, S. et al. Olive pomace as a valuable source of bioactive compounds: A study regarding its lipid- and water-soluble components. Sci Total Environ., v. 644, n.1, p. 229-236, 2018.

NYAU, V.; PRAKASH, S.; RODRIGUES J. et al. Screening Different Zambian Market Classes of Common Beans (Phaseolus vulgaris) for Antioxidant Properties and Total Phenolic Profiles. J. Food Nutr. Res., v. 4, n. 4, p. 230-236, 2016.

ODENY, D. A. The potential of pigeonpea (Cajanus cajan (L.) Millsp.) in Africa. Nat. Resour. Forum., v. 31, n. 1, p. 297-305, 2007.

OJWANG, L. O.; DYKES, L.; AWIKA, J. M. Ultra performance liquid chromatography-tandem quadrupole mass spectrometry profiling of anthocyanins and flavonols in Cowpea (Vigna unguiculata) of varying genotypes. J. Agric. Food Chem., v. 60, n. 14, p. 3735-3744, 2012.

OLANIPEKUN, O.T.; OMENNA, E.C.; OLAPADE O.A. et al. Effect of boiling and roasting on the nutrient composition of kidney beans seed flour. Sky Journal of Food Science, v. 4, n. 2, p. 24-29, 2015.

OSORIO-DÍAZ, P.; BELLO-PÉREZ, L. A.; SAYAZO-AYERDI, S. G. et al. Effect of processing and storage time on Kutos. J. Sci. Food Agric., v. 83, n. 1, p. 1283-1288, 2003.

PADHI, E. M.T.; LIU, R.; HERNANDEZ, M. et al. Total polyphenol content, carotenoid, tocopherol and fatty acid composition of commonly consumed Canadian pulses and their contribution to antioxidant activity. JFF, v. 38, n. 1, p. 602-611, 2017.

PADHI, E. M.T.; RAMDATH, D. D. A review of the relationship between pulse consumption and reduction of cardiovascular disease risk factors. JFF, v. 38, n. 1, 635-643, 2017.

POLHILL, R. M.; VIDAL, J. E. Caesalpineae. In Polhill, R.M.; HAVEN, P.V.(Ed.). Advances in Legume Systematic 10, higher level systematic. London Royal botanic Gardens, Kewl, 1982. p. 81-95.

PRADEEP, S.R., GUHA, M. Effect of processing methods on the nutraceuticals and antioxidant properties of little millet (Panicum sumatrense) extracts. Food Chem., v. 126, n. 4, p. 1643-1647, 2011.

PRIOR, R.; WU, X.; SCHAICH, K. Standardized Methods for the determination of Antioxidant Capacity and Phenolics in Food and Dietary Supplements. J. Agric. Food Chem., v. 53, n. 1, p. 4290-4306, 2005.

RAHATE, K. A.; MADHUMITA, M.; PRABHAKAR, P. K. Nutritional composition, anti-nutritional factors, pretreatments-cum-processing impact and food formulation potential of faba bean (Vicia faba L.): a comprehensive review. LWT, v. 138, ID 110796, 2021. Disponível em: doi: 10.1016/j.lwt.2020.110796. Acesso em: 10 fev. 2023.

RAKIC, S.; PETROVIC, S.; KUKIC, J. et al. Influence of thermal treatment on phenolic compounds and antioxidant properties of oak acorns from Serbia. Food Chem., v. 104, n. 1, p. 830-834, 2007.

RAMADAN, M. F.; MORSEL, J. T. Oxidative stabiliy of black cumin (Nigella sativa L.), coriadnder (Coriandrum sativum L.) and niger (Guizotia abyssinica Cass.) crude seed oils upon stripping. Euro. J. Lipid Sci. Technol., v. 106, n. 1, p. 35-43, 2004.

RAMÍREZ-JIMÉNEZ, A. K.; REYNOSO-CAMACHO, R.; MENDOZA-DÍAZ, S. et al. Loarca-Piña G. Functional and technological potential of dehydrated Phaseolus vulgaris L. flours. Food Chem., v. 161, n. 1, p. 254-60, 2014.

RANILLA, L. G.; GENOVESE, M. I.; LAJOLO, F. M. Effect of different cooking conditions on phenolic compounds and antioxidant capacity of some selected Brazilian bean (Phaseolus vulgaris L.) cultivars. J Agric Food Chem., v. 57, n. 13, p. 5734-42, 2009.

RIBEIRO, S. R.; FORTES, C. C.; OLIVEIRA, S. C. C.; CASTRO, C. F. S. Avaliação da Atividade Antioxidante de Solanum Paniculatum (Solanaceae). Arq. Ciênc. Saúde Unipar, v. 11, n. 3, p. 179-183, 2007.

RIFNA, E. J.; RATISH RAMANAN, K.; MAHENDRAN, R. Emerging technology applications for improving seed germination. Trends Food Sci. Technol., v. 86, n. 1, p. 95-108, 2019.

ROS, E.; HU, F. B. Consumption of plant seeds and cardiovascular health: epidemiological and clinical trial evidence. Circulation, v. 128, n.5, p. 553–565, 2013.

RYAN, E.; GALVIN, K.; O’CONNOR, T. P. et al. Phytosterol, squalene, tocopherol content and fatty acid profile of selected seeds, grains, and legumes. Plant Foods Hum Nutr., v. 62, n. 1, p. 85-91, 2007.

SAGET, S.; COSTA, M.; BARILLI, E. et al. Substituting wheat with chickpea flour in pasta production delivers more nutrition at a lower environmental cost. Sustain. Product. Consumpt., v. 24, n. 1, p. 26-38, 2020.

SAHNI, C. K.; KHURDIYA, D. S.; DALAL, M. A. et al. Microwave processing of foods – potential and prospects. Indian Food Packer, v. 51, n. 5, p. 32-42, 1997.

SCALBERT, A.; MANACH, C.; MORAND, C. et al. Dietary polyphenols and the prevention of diseases. Crit Rev Food Sci Nutr., v. 45, n. 4, p. 287-306, 2005.

SETIA, R.; DAI, Z.; NICKERSON, M. T. et al. Impacts of short-term germination on the chemical compositions, technological characteristics and nutritional quality of yellow pea and faba bean flours. Food Res. Int., 122, 263–272, 2019.

SIAH, S. D.; KONCZAK, I.; AGBOOLA, S. et al. In vitro investigations of the poten-tial health benefits of Australian-grown faba beans (Vicia faba L.): Chemopreventive capacity and inhibitory effects on the angiotensin-converting enzyme, a-glucosidase and lipase. BJN, v. 108, Suppl 1, p. S123-134, 2012.

SIDDHURAJU, P. The antioxidant activity and free radical-scavenging capacity of phenolics of raw and dry heated moth bean (Vigna aconitifolia) (Jacq.) Marechal seed extracts. Food Chem., v. 99, n. 1, p. 149-157, 2006.

SILVA, M. O.; BRIGIDE, P.; TOLEDO, N. M. V. et al. Phenolic compounds and antioxidant activity of two bean cultivars (Phaseolus vulgaris L.) submitted to cooking. Braz. J. Food Technol., v. 21, e2016072, 2018. Disponível em: https://www.scielo.br/j/bjft/a/ZSWKBVWdqy458phmQwK7Twr/?format=pdf&lang=en. Acesso em: 10 fev. 2023.

SIMOPOULOS A.P. The importance of the omega-6/omega-3 Fatty Acid ratio in cardiovascular disease and other chronic diseases. Exp. Biol. Med., v. 233, n. 1, p. 674–688, 2008.

SIMOPOULOS, A. P. An Increase in the Omega-6/Omega-3 Fatty Acid Ratio Increases the Risk for Obesity. Nutrients, v. 8, n. 3, p. 128, 2016.

TETERYCZ, D.; SOBOTA, A.; ZARZYCKI, P. et al. Legume flour as a natural colouring component in pasta production. J. Food Sci. Technol., v. 57, n. 1, p. 301-309, 2020.

TIRZITIS, G.; BARTOSZ, G. Determination of antiradical and antioxidant activity: basic principles and new insights. Acta Biochim. Pol., v. 57, n. 1, p. 139-142, 2010.

U.S. DEPARTMENT OF AGRICULTURE AND U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES. Dietary Guidelines for Americans. Washington, DC: U.S. Government Printing Office, 2010.

VAZ PATTO, M. C.; AMAROWICZ, R.; ARYEE, A. N. A. et al. Achievements and challenges in improving the nutritional quality of food legumes. Crit Rev Plant Sci., v. 34, n. 1, p. 105-143, 2015.

VOLPATO, G.; GODÍNEZ, D.; BEYRA, A. et al. Uses of medicinal plants by Haitian immigrants and their descendants in the Province of Camagüey, Cuba. J. Ethnobiol., v.18, n. 1, p. 5-16, 2009.

WANG, S.; MECKLING, K.A.; MARCONE, M. F. et al. Synergistic, additive, and antagonistic effects of food mixtures on total antioxidant capacities. J Agric Food Chem., 2011; v. 59, n. 3, p. 960-8, 2011.

WYATT, C. J.; CARBALLIDO, S.P.; MÉNDEZ, R.O. α - and γ -Tocopherol content of selected foods in the Mexican diet: Effect of cooking losses. J Agric Food Chem., v. 46, n. 1, p. 4657-4661, 1998.

XU, B. J.; CHANG, S. K. C. Total phenolic content and antioxidant properties of eclipse black beans (Phaseolus vulgaris L.) as affected by processing methods. J. Food Sci., v. 73, n. 2, p. 19-27, 2008.

XU, M.; JIN, Z.; SIMSEK, S. et al. Effect of germination on the chemical composition, thermal, pasting, and moisture sorption properties of flours from chickpea, lentil, and yellow pea. Food Chem., v. 295, n. 1, p. 579-587, 2019.

XU, M.; RAO, J.; CHEN, B. Phenolic compounds in germinated cereal and pulse seeds: classification, transformation, and metabolic process. Crit. Rev. Food Sci. Nutr., v. 60, n. 1, p. 740-759, 2020.

YOSHIDA, H.; TOMIYAMA, Y.; MIZUSHINA, Y. Tocopherol Distributions and Triacylglycerol Molecular Species in Broad Beans (Vicia faba). Food Sci. Technol. Res., v. 16, n. 5, p. 409-416, 2010.

YOSHIDA, H.; YOSHIDA, N.; TOMIYAMA, Y. et al. Distribution profiles of tocopherols and fatty acids of phospholipids in adzuki beans (Vigna angularis). J. Food Lipids, v. 15, n. 1, p. 209-221, 2008.

YOSHIDA, H.; TOMIYAMA, Y.; TANAKA, M. et al. Distribution of fatty acids in triacylglycerols and phospholipids from peas (Pisum sativumL.) Journal of the Science of Food and Agriculture, v. 87, n.1, p. 2709-2714, 2007.

YU-WEI, L.; WANG, Q. Effect of Processing on Phenolic Content and Antioxidant Activity of Four Commonly Consumed Pulses in China. J Horticulture, v. 2, n. 1, p. 2, 2015.

Downloads

Publicado

18-07-2023

Como Citar

Benevides, C. M. de J., Pinto, L. C., da Silva, A. S. L., da Costa, A. G., Pinto, D. A. T., Alves, R. de C., & Oliveira, M. B. P. P. (2023). EFEITO DA GERMINAÇÃO E DA DESIDRATAÇÃO NO VALOR NUTRITIVO, COMPOSTOS BIOATIVOS E ATIVIDADE ANTIOXIDANTE DE FARINHAS DE LEGUMINOSAS. Arquivos De Ciências Da Saúde Da UNIPAR, 27(7), 3396–3428. https://doi.org/10.25110/arqsaude.v27i7.2023-010

Edição

Seção

Artigos