AVANÇOS NO ENTENDIMENTO DA PATOGENIA DA COVID-19: UMA REVISÃO

Autores

DOI:

https://doi.org/10.25110/arqsaude.v28i1.2024-10499

Palavras-chave:

COVID-19, HLA, SARS-CoV-2, Hiperinflamação

Resumo

Introdução: O SARS-CoV-2, causador da pandemia por Doença por Coronavirus 2019 (COVID-19) gerou desafios à saúde pública, principalmente pelo conhecimento escasso de sua patogênese, e de estratégias terapêuticas e preventivas eficazes. Diversas lacunas de conhecimento sobre a doença envolvem a contribuição de fatores de risco, as doenças concomitantes, os fatores genéticos e imunogenéticos, no direcionamento da resposta imune, bem como a hiperinflamação, a imunidade antiviral e os alelos dos antígenos leucocitários humanos (HLAs) dos pacientes, que estão relacionados ao desfecho da doença. Objetivo: Esta revisão integrativa objetivou aprofundar os conhecimentos sobre os mecanismos de imunidade relacionada aos fatores de risco, da hiperinflamação e da tempestade de citocinas decorrente da infecção por SARS-CoV-2, bem como os avanços de associação dos HLAs nos agravos da doença. Metodologia: A revisão integrativa foi realizada utilizando os descritores nas bases de dados PubMed, SCIELO, CINAHL, SCOPUS, Web of Science, MedNar, Portal periódicos CAPES e Open Journal System, sem limites de janela cronológica. Resultados: Os efeitos da pandemia e os esforços na busca do conhecimento sobre a patogênese da COVID-19 resultaram em avanço no combate da doença. Conseguiu-se relacionar fatores de risco como obesidade, hipertensão, diabetes, doenças renais crônicas, idade, gênero, e outras condições predisponentes ao agravo da doença. Sob o aspecto da patogênese, também houveram progressos no entendimento dos mecanismos celulares e humorais em resposta à doença, bem como conseguiu vincular a resposta da hiperinflamação e o perfil dos HLAs dos pacientes à evolução da doença ao óbito ou à convalescência. Conclusão: Os esforços científicos conjuntos e os avanços na compreensão dos mecanismos da doença conseguiram estabelecer estratégias de combate a COVID-19, resultando no fim da pandemia, porém ainda há avanços que devem ser alcançados para o combate das sequelas dos pacientes convalescentes e para minimização da COVID longa e seus prejuízos.

Biografia do Autor

Gilcele Campos Martin Berber, Universidade Federal de Mato Grosso

Doutoranda em Ciências da Saúde, Pós-graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso

Renata Dezengrini Slhessarenko, Universidade Federal de Mato Grosso

Doutora em Medicina Veterinária, Programa de Pós-graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso

Referências

ABDELHAFIZ, A. S. et al. HLA-B*15 predicts survival in Egyptian patients with COVID-19. Hum Immunol, v.83, n.1, p.10-16, 2022.

ABOUDOUNYA, M. M.; HEADS, R. J. COVID-19 and Toll-like receptor 4 (TLR4): SARSCoV-2 may bind and activate TLR4 to increase ACE2 expression, facilitating entry and causing Hyperinflammation. Mediators of Inflam. v.2021, p.18, 2021.

AHMADPOUR, D.; AHMADPOOR, P. How the COVID-19 Overcomes the Battle? An Approach to Virus Structure. Iranian JKidney Dis, v.14, n.3, p.167-172, 2020.

AHN, J. H. et al. Nasal ciliated cells are primary targets for SARS-CoV-2 replication in the early stage of COVID-19. J Clin Invest, v.131, n.13, e148517, 2021.

ALVES, F. M. et al. Imunopatologia da infecção por SARS-CoV-2 em pacientes onco-hematológicos. Hematol Transfus Cell Ther, v.42, p.539, 2020.

ANZUREZ, A. et al. Association of HLA‐DRB1*09:01 with severe COVID‐19. HLA, v.98, p.37-42, 2021.

ASTBURY, S. et al. HLA-DR polymorphism in SARS-CoV-2 infection and susceptibility to symptomatic COVID-19. Immunol, v.166, p.68–77, 2022.

ASTUTI, I.; YSRAFIL. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): An overview of viral structure and host response. Diab & metab synd. v.14, n.4, p.407–412, 2020.

AUGUSTO, D. G. et al. HLA-B*15:01 is associated with asymptomatic SARS-CoV-2 infection. Medrxiv 2021, https://doi.org/10.1101/2021.05.13.21257065.

BANERJEE, M. et al. Obesity and COVID-19: A Fatal Alliance. Indian J Clin Biochem, v.35, n.4, p.410-417, 2020.

BARKAUSKAS, C. E. et al. Type 2 alveolar cells are stem cells in adult lung. J Clin Invest, v.123, n.7 p.3025-2036, 2013.

BARRETT, E. S. et al. Prevalence of SARS-CoV-2 infection in previously undiagnosed health care workers at the onset of the U.S. COVID-19 epidemic. BMC Infect Dis, v.20, n.1, p.853, 2020.

BARROSO, W. K. S. et al. Diretrizes Brasileiras de Hipertensão Arterial – 2020. Arq Bras Cardiol, v.116, n.3, p.516-658, 2021.

BEUMER, J. et al. A CRISPR/Cas9 genetically engineered organoid biobank reveals essential host factors for coronaviruses. Nat Commun, v.12, p.5498, 2021

BEVACQUARAÚL, J.; PERRONE SERGIO, V. COVID-19: relación entre enzima convertidora de angiotensina 2, sistema cardiovascular y respuesta inmune del huésped. Insuf card, v.15, n.2, 2020.

BLACKWELL, J. M.; JAMIESON, S.E.; BURGNER, D. HLA and infectious diseases. Clin Microbiol Rev, v.22, p.370-385, 2009.

BRANDÃO, S.C.S. et al. Severe COVID-19: understanding the role of immunity, endothelium, and coagulation in clinical practice. J Vasc Bras, v.19, p. e20200131, 2020.

BRASIL. Ministério da Saúde. Informações sobre COVID-19. 2023. Disponível em: https://infoms.saude.gov.br/extensions/covid-19_html/covid-19_html.html. Acesso em: 1 jun. 2023.

CANTUTI-CASTELVETRI, L. et al. Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity. Science, v.370, n.6518, p.856-860, 2020.

CARDOSO, T. N. Avaliação do perfil imunoinflamatório sérico em idosos hospitalizados com covid-19 grave. 2022. 64f. Dissertação (Programa de Pós-Graduação em Ciências Farmacêuticas - PPGCF) - Universidade Estadual da Paraíba, Campina Grande, 2022.

CAUCHOIS, R. et al. Early IL-1 receptor blockade in severe inflammatory respiratory failure complicating COVID-19. Proc Natl Acad Sci USA, v.117, n.32. p. 18951-18953, 2020.

CHIAPPETTA, S. et al. COVID-19 and the role of chronic inflammation in patients with obesity. Int J Obes, v.44, p.1790–1792, 2020.

CROFT, N. P. et al. Most viral peptides displayed by class I MHC on infected cells are immunogenic, Proc Natl Acad Sci USA, v.116, n. 8, p.3112–3117, 2019.

DE WIT, J. et al. Role of HLA and KIR in Viral Infections. Front. Immunol, v.7, p.286, 2016.

DEB, P. et al. Association of HLA gene polymorphism with susceptibility, severity, and mortality of COVID-19: A systematic review. HLA, v.99, n.4, p.281-312, 2022.

DENDROU, C. A. et al. HLA variation and disease. Nat Rev Immunol, v. 18, p. 325-239, 2018.

DIAS, A. B. S. et al. A relação da obesidade com os óbitos por Covid-19: análise dos números da pandemia no Brasil. Braz J Dev, v.6, n.10, p.82097–82110, 2020.

DONOGHUE, M. et al. A novel angiotensin-convertingenzyme–relatedcarboxypeptidase (ACE2) convertsangiotensinintoangiotensin 1-9. Circ Res, v.87, n.5, p e1–e9, 2000.

EBRAHIMI, S. et al. HLA-DRB1*04 may predict the severity of disease in a group of Iranian COVID-19 patients. Hum Immunol, v.82, p.719-725, 2021.

FELSENSTEIN, S. et al. COVID-19: Immunology and treatment options. Clinical Immunology. v.215, p.108448, 2020.

FERIOLI, M. et al. Protecting healthcare workers from SARS-CoV-2 infection: practical indications. Eur Respir Rev, v.3, n.155, p.200068, 2020.

HENRY, B. M.; LIPPI, G. Chronic kidney disease is associated with severe coronavirus disease 2019 (COVID-19) infection. Int. Urol. Nephrol, v.52, p.1193–1194, 2020.

HOFFMANN, M. et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, v.181, n.2, p.271-280, 2020.

HOU, Y. J. et al. SARS-CoV-2 reverse genetics reveals a variable infection gradient in the respiratory tract. Cell, v.182, n.2, p.429-446.e14, 2020.

Hulswit, R. J. et al. Coronavirus Spike protein and tropism changes. Adv Virus Res, v.96, p.29–57, 2016.

ITURRIETA-ZUAZO, C. G. et al., Possible role of HLA class-I genotype in SARS-CoV-2 infection and progression: A pilot study in a cohort of Covid-19 Spanish patients, Clin Immunol, v. 219, 2020.

KATSURA, H. et al. Human lung stem cell-based alveolospheres provide insights into SARS-CoV-2-mediated interferon responses and pneumocyte dysfunction. Cell Stem Cell, v.27, n.6, p.890-904.e8, 2020.

KAYESH, M. E. H. et al. An overview of recent insights into the response of TLR to SARS-CoV-2 infection and the potential of TLR agonists as SARS-CoV-2 vaccine adjuvants. Viruses, v.13, p.2302, 2021.

KHAN, M. et al. Visualizing in deceased COVID-19 patients how SARS-CoV-2 attacks the respiratory and olfactory mucosae but spares the olfactory bulb. Cell, v.184, n.24, p.5932-5949.e15, 2021a.

KHAN, S. et al. SARS-CoV-2 spike protein induces inflammation via TLR2-dependent activation of the NF-κB pathway. Elife, v.10, e68563, 2021b.

KHANMOHAMMADI, S.; REZAEI, N. Role of Toll-like receptors in the pathogenesis of COVID-19. J Med Virol, v.93, p.2735–2739, 2021.

KNOOPS, K. et al. SARS-Coronavirus replication is supported by a reticulovesicular network of modified endoplasmic reticulum. PLoS Biol, v.6, n. 9, p. e226, 2008.

LAMERS, M. M.; HAAGMANS, B. L. SARS-CoV-2 pathogenesis. Nat Rev Microbiol, v.20, p.270-284, 2022.

LANGTON, D. J. et al. The influence of HLA genotype on the severity of COVID‐19 infection. HLA, v.98, p.14-22, 2021.

LI, G. et al. Coronavirus infections and immune responses. J MedVirol, v.92, n.4, p.424–432, 2020.

LIU, J. et al. SARS-CoV-2 cell tropism and multiorgan infection. Cell Discovery, v.7, n.17, 2021.

LU, R. et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet, v.395, p.565–74, 2020.

LUCCHETTA, R. et al. Hidroxicloroquina para pacientes com COVID-19 não hospitalizados: Uma revisão sistemática e metanálise de ensaios clínicos randomizados. Arq Bras Cardiol, v.120, p.e20220380, 2023.

LUNSKI, M. J. et al. Multivariate mortality analyses in COVID-19: Comparing patients with cancer and patients without cancer in Louisiana. Cancer, v.127, n.2, p.266-274, 2021.

LUO, X. H. et al. T cell immunobiology and cytokine storm of COVID-19. Scandinavian J Immunol.v.93, e12989, 2021.

MABLEY, J. et al. Nicotine exerts an anti-inflammatory effect in a murine model of acute lung injury. Inflammation, v.34, p.231–237, 2011.

MAGNER, W. J. et al. Activation of MHC class I, II, and CD40 gene expression by histone deacetylase inhibitors. J. Immunol. v.165, p.7017–7024, 2000.

MANGALMURTI, N. Hunter, C.A. Cytokine storms: understanding COVID-19. Immunity, v.53, n.1, p.19-25, 2020.

MANISTY, C. et al. Time series analysis and mechanistic modelling of heterogeneity and sero-reversion in antibody responses to mild SARSCoV-2 infection. EBioMedicine, v. 65, p.103259, 2021.

MARTELLETO, G. K. S. et al. Principais fatores de risco apresentados por pacientes obesos acometidos de COVID-19: uma breve revisão. Braz J Develop, v.7, n.2, p.13438-13458, 2021.

MARTIN, M. P.; CARRINGTON, M. Immunogenetics of HIV disease. Immunol Rev, v.254, p.245–264, 2013.

MOORE, J. B.; JUNE, C. H. Cytokine release syndrome in severe COVID-19. Science, v.368, n.6490, p.473-474, 2020.

NÄGELE, M. P. et al. Endothelial dysfunction in COVID-19: current findings and therapeutic implications. Atherosclerosis, v.314, p.58-62, 2020.

NI, L. et al. Detection of SARS-CoV-2-Specific humoral and cellular immunity in COVID-19 convalescent individuals. Immunity,v.52, p.971–977, 2020.

OVSYANNIKOVA, I.G. et al. Human leukocyte antigens and cellular immune responses to anthrax vaccine adsorbed. Infection Immunol, v.81, p.2584–2591, 2013.

PAN, W. et al. Clinical features of COVID-19 in patients with essential hypertension and the impacts of renin-angiotensin-aldosterone system inhibitors on the prognosis of COVID-19 patients. Hypertension, v.76, n.3, p.732-741, 2020.

PETRAKIS, D. et al. Obesity a risk factor for increased COVID 19 prevalence, severity, and lethality (Review). Mol Med Rep, v. 22, n. 1, p. 9-19, 2020.

PIRES, L. N.; CARVALHO, L.; XAVIER, L.D.L. COVID-19 e desigualdade: a distribuição dos fatores de risco no Brasil. Experiment Findings, v.21, p.10.13140, 2020.

PRETTI, M. A. M. I. et al. Class I HLA allele predicted restricted antigenic coverages for Spike and nucleocapsid proteins are associated with deaths related to COVID-19. Front Immunol, v.11, p.565730, 2020.

RENZHENG CHEN, R. et al. Influence of blood pressure control and application of renin-angiotensin-aldosterone system inhibitors on the outcomes in COVID-19 patients with hypertension. J Clin Hypertens, v.22, n.11, 2020.

REYNOLDS, C. J. et al. Discordant neutralizing antibody and T cell responses in asymptomatic and mild SARS-CoV-2 infection. Sci Immunol, v.5, 2020.

ROBBINS-JUAREZ, S. Y. et al. Outcomes for patients with COVID-19 and acute kidney injury: a systematic review and meta-analysis. Kidney Int Rep, v.5, n.8, p.1149-1160, 2020.

SALVI, V. et al. SARS-CoV-2–associated ssRNAs activate inflammation and immunity via TLR7/8.JCI Insight, v. 6, n. 18, p. e150542, 2021.

SANT’ANA, G. et al. Infecção e óbitos de profissionais da saúde por COVID-19: revisão sistemática. Acta Paulista Enf, v.33, p. eAPE20200107, 2020.

SILVA, A. L. O. et al. COVID-19 e tabagismo: uma relação de risco. Cad Saúde Públ, v.36, n.5, p. e00072020, 2020.

SLOMK, A. et al. Coronavirus Disease 2019 (COVID–19): A short review on hematological manifestations. Pathogen. v.9, n.6, p.493, 2020.

STAMATAKIS, G. et al. Generation of SARS-CoV-2 S1 Spike Glycoprotein Putative Antigenic Epitopes in Vitro by Intracellular Aminopeptidases, J Proteome Res, v.19, n.11, p. 4398–4406, 2020.

V’KOVSKI, P. et al. Coronavirus biology and replication: implications for SARS-CoV-2. Nat. Rev. Microbiol, v. 19, p. 155-170, 2021.

VINER, R. et al. School closures during social lockdown and mental health, health behaviors, and well-being among children and adolescents during the first COVID-19 wave: a systematic review. JAMA pediatrics. v. 176, n. 4, p. 400-409, 2022.

WANG, F. et al. Initial whole-genome sequencing and analysis of the host genetic contribution to COVID-19 severity and susceptibility. Cell Discov, v.6, p.83, 2020.

WANG, X. et al. Multiomics: unravelling the panoramic landscapes of SARS-CoV-2 infection. Cell Molec Immunol. 18: 2313-2324, 2021.

WEI, J. et al. Genome-wide CRISPR Screens Reveal Host Factors Critical for SARS-CoV-2 Infection. Cell, v.184, n.1, p.76-91, 2021.

WOLFF, D. et al. Risk factors for Covid-19 severity and fatality: a structured literature review. Infection, v.49, p.15–28, 202.

YANG, K. et al. Clinical characteristics, outcomes, and risk factors for mortality in patients with cancer and COVID-19 in Hubei, China: a multicentre, retrospective, cohort study. Lancet Oncol, v.21, p.904-913, 2020.

YIGENOGLU, T. N. et al. The outcome of COVID-19 in patients with hematological malignancy. J Med Virol, v.93, n.2, p.1099-1104, 2021.

ZHAO, Y. et al. SARS-CoV-2 spike protein interacts with and activates TLR4.Cell Res, v. 7, p. 818-820, 2021.

ZHENG, Z. et al. Risk factors of critical & mortal COVID-19 cases: a systematic literature review and meta-analysis. J Infect, v. 81, n. 2, p. 16-25, 2020.

Downloads

Publicado

21-03-2024

Como Citar

Berber, G. C. M., & Slhessarenko, R. D. (2024). AVANÇOS NO ENTENDIMENTO DA PATOGENIA DA COVID-19: UMA REVISÃO. Arquivos De Ciências Da Saúde Da UNIPAR, 28(1), 59–82. https://doi.org/10.25110/arqsaude.v28i1.2024-10499

Edição

Seção

Artigos